
Dynamic Allocation of Memory
Lecture 5

Section 9.8

Robb T. Koether

Hampden-Sydney College

Wed, Jan 24, 2018

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 1 / 34



1 C-Style Memory Allocation
The malloc() Function
The free() Function
malloc(), calloc(), and realloc()

2 C++-Style Memory Allocation
The new Operator
The delete Operator

3 Memory Leaks

4 Dangling Pointers

5 Assignment

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 2 / 34



Outline

1 C-Style Memory Allocation
The malloc() Function
The free() Function
malloc(), calloc(), and realloc()

2 C++-Style Memory Allocation
The new Operator
The delete Operator

3 Memory Leaks

4 Dangling Pointers

5 Assignment

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 3 / 34



The Vectr Class

We would like to design a class of objects that would be like
arrays, but whose size could be declared at run time, not compile
time.
We will call this class Vectr. (There is already a vector class.)

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 4 / 34



Arrays vs. Vectrs

Arrays
const int MAX_SIZE = 20;
int size = 10;
int a[MAX_SIZE]; // Legal
int b[size]; // Illegal
a[5] = 123; // Legal
a = b; // Illegal
cout << a[5] << endl; // Legal
cout << a << endl; // Legal, but not advised. Why?

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 5 / 34



Arrays vs. Vectrs

Vectrs
const int MAX_SIZE = 20;
int size = 10;
Vectr v(MAX_SIZE); // Legal
Vectr w(size); // Legal
v[5] = 123; // Legal
v = w; // Legal
cout << v[5] << endl; // Legal
cout << v << endl; // Legal

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 6 / 34



Vectr Objects

Non-empty Vectr

size
element

5

Empty Vectr

size
element

0

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 7 / 34



Outline

1 C-Style Memory Allocation
The malloc() Function
The free() Function
malloc(), calloc(), and realloc()

2 C++-Style Memory Allocation
The new Operator
The delete Operator

3 Memory Leaks

4 Dangling Pointers

5 Assignment

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 8 / 34



Allocation of Memory: C Style

The malloc() Prototype
void* malloc(int number-of-bytes);

The library function malloc() allocates a specified number of
bytes of memory and returns a pointer to it.
Include the header file <cstdlib>.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 9 / 34



Allocation of Memory: C Style

malloc() Usage
int* pi = (int*)malloc(sizeof(int));
Point* ppt = (Point*)malloc(sizeof(Point));

malloc() returns a pointer to the first byte of the allocated
memory block.
The returned pointer is a pointer to void.
The returned pointer must be cast to the proper type.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 10 / 34



Outline

1 C-Style Memory Allocation
The malloc() Function
The free() Function
malloc(), calloc(), and realloc()

2 C++-Style Memory Allocation
The new Operator
The delete Operator

3 Memory Leaks

4 Dangling Pointers

5 Assignment

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 11 / 34



Deallocation of Memory: C Style

The free() Prototype
void free(void* p);

The library function free() deallocates memory.
Include the header file <cstdlib>.
The pointer must contain an address that was previously returned
by malloc().

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 12 / 34



Deallocation of Memory: C Style

The free() Usage
int* p = (int*)malloc(sizeof(int));
*p = 123; // Do stuff with p

...
free(p);

If the programmer does not call free(), then memory allocated
by malloc() is automatically freed when the program exits.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 13 / 34



Dynamic Memory for Arrays: C Style

Array Allocation with malloc() and free()
int size = 20;
int* p = (int*)malloc(size*sizeof(int));
p[5] = 123; // Do stuff with p

...
free(p);

malloc() can be used to allocate memory for an array.
Then free() will deallocate the memory.
The computer remembers the size of the array.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 14 / 34



Example

Example (Example)
DynamicCArray.cpp.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 15 / 34



Outline

1 C-Style Memory Allocation
The malloc() Function
The free() Function
malloc(), calloc(), and realloc()

2 C++-Style Memory Allocation
The new Operator
The delete Operator

3 Memory Leaks

4 Dangling Pointers

5 Assignment

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 16 / 34



The calloc() Function

The calloc() Prototype
void* calloc(int num-of-objects, int size-of-object);

The library function calloc() allocates memory for a specified
number of objects each of a specified size and returns a pointer to
it.
Include the header file <cstdlib>.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 17 / 34



The calloc() Function

calloc() Usage
int* pi = (int*)calloc(1, sizeof(int));
Point* ppt_arr = (Point*)calloc(50, sizeof(Point));

calloc() returns a pointer to the first byte of the allocated
memory block.
The returned pointer is a pointer to void.
The returned pointer must be cast to the proper type.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 18 / 34



The realloc() Function

The realloc() Prototype
void* realloc(void* p, int num-of-bytes);

The library function realloc() will allocate a new block of
memory containing the specified number of bytes.
The contents of the “old” memory will be copied to the “new”
memory (as much as fits).
Include the header file <cstdlib>.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 19 / 34



The realloc() Function

realloc() Usage
int* p = (int*)malloc(100*sizeof(int));
for (int i = 0; i < 100; i++)

p[i] = 10*i;
p = (int*)realloc(p, 200*sizeof(int));

The contents 0, 10, 20, . . . , 990 will be copied to the new
memory.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 20 / 34



Outline

1 C-Style Memory Allocation
The malloc() Function
The free() Function
malloc(), calloc(), and realloc()

2 C++-Style Memory Allocation
The new Operator
The delete Operator

3 Memory Leaks

4 Dangling Pointers

5 Assignment

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 21 / 34



Outline

1 C-Style Memory Allocation
The malloc() Function
The free() Function
malloc(), calloc(), and realloc()

2 C++-Style Memory Allocation
The new Operator
The delete Operator

3 Memory Leaks

4 Dangling Pointers

5 Assignment

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 22 / 34



Allocation of Memory: C++ Style

The new Operator
Type* p = new Type; // For single object
Type* p = new Type[size]; // For an array

C++ introduced the new operator to replace malloc().
It can allocate memory for a single object.
And it can allocate memory for an array of objects.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 23 / 34



Outline

1 C-Style Memory Allocation
The malloc() Function
The free() Function
malloc(), calloc(), and realloc()

2 C++-Style Memory Allocation
The new Operator
The delete Operator

3 Memory Leaks

4 Dangling Pointers

5 Assignment

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 24 / 34



Deallocation of Memory: C++ Style

The delete Operator
delete p; // Delete single object
delete [] p; // Delete an array

The delete operator will delete memory that was allocated by
the new operator.
delete can deallocate memory for a single object.
And it can deallocate memory for an array of objects.
The pointer must contain an address that was previously returned
by new.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 25 / 34



Dynamic Memory for Arrays: C++ Style

Array Allocation with new and delete
int size = 20;
int* p = new int[size];
p[5] = 123; // Do stuff with p

...
delete [] p;

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 26 / 34



Example

Example (Example)
DynamicC++Array.cpp.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 27 / 34



Outline

1 C-Style Memory Allocation
The malloc() Function
The free() Function
malloc(), calloc(), and realloc()

2 C++-Style Memory Allocation
The new Operator
The delete Operator

3 Memory Leaks

4 Dangling Pointers

5 Assignment

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 28 / 34



Memory Leaks

Definition (Memory Leak)
A memory leak occurs when all pointers to a block of allocated
memory have been lost.

Leaked memory cannot be accessed or reallocated; it is useless.
Excessive memory leaks may cause the program to run out of
usable memory and crash.
Memory leaks should always be avoided.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 29 / 34



Outline

1 C-Style Memory Allocation
The malloc() Function
The free() Function
malloc(), calloc(), and realloc()

2 C++-Style Memory Allocation
The new Operator
The delete Operator

3 Memory Leaks

4 Dangling Pointers

5 Assignment

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 30 / 34



Dangling Pointers

Definition (Dangling Pointer)
A dangling pointer is a non-null pointer that points to unallocated
memory.

Dereferencing a dangling pointer may cause the program to crash.
We do not necessarily avoid dangling pointers, but we must be
careful.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 31 / 34



Avoiding Dangling Pointers

It impossible to test a non-null pointer to see whether it is dangling.
Always set pointers to NULL if they do not point to allocated
memory.
Then compare them to NULL to see whether they point to
allocated memory.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 32 / 34



Outline

1 C-Style Memory Allocation
The malloc() Function
The free() Function
malloc(), calloc(), and realloc()

2 C++-Style Memory Allocation
The new Operator
The delete Operator

3 Memory Leaks

4 Dangling Pointers

5 Assignment

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 33 / 34



Assignment

Assignment
Read Section 9.8.

Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 34 / 34


	C-Style Memory Allocation
	The malloc() Function
	The free() Function
	malloc(), calloc(), and realloc()

	C++-Style Memory Allocation
	The new Operator
	The delete Operator

	Memory Leaks
	Dangling Pointers
	Assignment

