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The Vectr Class

We would like to design a class of objects that would be like
arrays, but whose size could be declared at run time, not compile
time.
We will call this class Vectr. (There is already a vector class.)
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Arrays vs. Vectrs

Arrays
const int MAX_SIZE = 20;
int size = 10;
int a[MAX_SIZE]; // Legal
int b[size]; // Illegal
a[5] = 123; // Legal
a = b; // Illegal
cout << a[5] << endl; // Legal
cout << a << endl; // Legal, but not advised. Why?
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Arrays vs. Vectrs

Vectrs
const int MAX_SIZE = 20;
int size = 10;
Vectr v(MAX_SIZE); // Legal
Vectr w(size); // Legal
v[5] = 123; // Legal
v = w; // Legal
cout << v[5] << endl; // Legal
cout << v << endl; // Legal
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Vectr Objects

Non-empty Vectr

size
element

5

Empty Vectr

size
element

0
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Allocation of Memory: C Style

The malloc() Prototype
void* malloc(int number-of-bytes);

The library function malloc() allocates a specified number of
bytes of memory and returns a pointer to it.
Include the header file <cstdlib>.
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Allocation of Memory: C Style

malloc() Usage
int* pi = (int*)malloc(sizeof(int));
Point* ppt = (Point*)malloc(sizeof(Point));

malloc() returns a pointer to the first byte of the allocated
memory block.
The returned pointer is a pointer to void.
The returned pointer must be cast to the proper type.
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Deallocation of Memory: C Style

The free() Prototype
void free(void* p);

The library function free() deallocates memory.
Include the header file <cstdlib>.
The pointer must contain an address that was previously returned
by malloc().
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Deallocation of Memory: C Style

The free() Usage
int* p = (int*)malloc(sizeof(int));
*p = 123; // Do stuff with p

...
free(p);

If the programmer does not call free(), then memory allocated
by malloc() is automatically freed when the program exits.
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Dynamic Memory for Arrays: C Style

Array Allocation with malloc() and free()
int size = 20;
int* p = (int*)malloc(size*sizeof(int));
p[5] = 123; // Do stuff with p

...
free(p);

malloc() can be used to allocate memory for an array.
Then free() will deallocate the memory.
The computer remembers the size of the array.
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Example

Example (Example)
DynamicCArray.cpp.
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The calloc() Function

The calloc() Prototype
void* calloc(int num-of-objects, int size-of-object);

The library function calloc() allocates memory for a specified
number of objects each of a specified size and returns a pointer to
it.
Include the header file <cstdlib>.
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The calloc() Function

calloc() Usage
int* pi = (int*)calloc(1, sizeof(int));
Point* ppt_arr = (Point*)calloc(50, sizeof(Point));

calloc() returns a pointer to the first byte of the allocated
memory block.
The returned pointer is a pointer to void.
The returned pointer must be cast to the proper type.
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The realloc() Function

The realloc() Prototype
void* realloc(void* p, int num-of-bytes);

The library function realloc() will allocate a new block of
memory containing the specified number of bytes.
The contents of the “old” memory will be copied to the “new”
memory (as much as fits).
Include the header file <cstdlib>.
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The realloc() Function

realloc() Usage
int* p = (int*)malloc(100*sizeof(int));
for (int i = 0; i < 100; i++)

p[i] = 10*i;
p = (int*)realloc(p, 200*sizeof(int));

The contents 0, 10, 20, . . . , 990 will be copied to the new
memory.
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Allocation of Memory: C++ Style

The new Operator
Type* p = new Type; // For single object
Type* p = new Type[size]; // For an array

C++ introduced the new operator to replace malloc().
It can allocate memory for a single object.
And it can allocate memory for an array of objects.
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Deallocation of Memory: C++ Style

The delete Operator
delete p; // Delete single object
delete [] p; // Delete an array

The delete operator will delete memory that was allocated by
the new operator.
delete can deallocate memory for a single object.
And it can deallocate memory for an array of objects.
The pointer must contain an address that was previously returned
by new.
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Dynamic Memory for Arrays: C++ Style

Array Allocation with new and delete
int size = 20;
int* p = new int[size];
p[5] = 123; // Do stuff with p

...
delete [] p;
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Example

Example (Example)
DynamicC++Array.cpp.
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Memory Leaks

Definition (Memory Leak)
A memory leak occurs when all pointers to a block of allocated
memory have been lost.

Leaked memory cannot be accessed or reallocated; it is useless.
Excessive memory leaks may cause the program to run out of
usable memory and crash.
Memory leaks should always be avoided.
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Dangling Pointers

Definition (Dangling Pointer)
A dangling pointer is a non-null pointer that points to unallocated
memory.

Dereferencing a dangling pointer may cause the program to crash.
We do not necessarily avoid dangling pointers, but we must be
careful.
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Avoiding Dangling Pointers

It impossible to test a non-null pointer to see whether it is dangling.
Always set pointers to NULL if they do not point to allocated
memory.
Then compare them to NULL to see whether they point to
allocated memory.
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Assignment

Assignment
Read Section 9.8.
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